Hankel operators and weak factorization for Hardy–Orlicz spaces

Tom 118 / 2010

Aline Bonami, Sandrine Grellier Colloquium Mathematicum 118 (2010), 107-132 MSC: 32A35, 32A37, 47B35. DOI: 10.4064/cm118-1-5

Streszczenie

We study the holomorphic Hardy–Orlicz spaces ${\cal H}^{\Phi}(\Omega)$, where $\Omega$ is the unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex domain in ${\mathbb C}^n$. The function $\Phi$ is in particular such that ${\cal H}^{1}(\Omega)\subset {\cal H}^{\Phi}(\Omega)\subset {\cal H}^{p}(\Omega)$ for some $p>0$. We develop maximal characterizations, atomic and molecular decompositions. We then prove weak factorization theorems involving the space ${\it BMOA}(\Omega)$. As a consequence, we characterize those Hankel operators which are bounded from $\mathcal H^\Phi(\Omega)$ into $\mathcal H^1(\Omega)$.

Autorzy

  • Aline BonamiFédération Denis Poisson (MAPMO-UMR 6628)
    Département de Mathématiques
    Université d'Orléans
    45067 Orléans Cedex 2, France
    e-mail
  • Sandrine GrellierFédération Denis Poisson (MAPMO-UMR 6628)
    Département de Mathématiques
    Université d'Orléans
    45067 Orléans Cedex 2, France
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek