Ergodic theorem, reversibility and the filling scheme

Tom 118 / 2010

Yves Derriennic Colloquium Mathematicum 118 (2010), 599-608 MSC: 37A05, 28D. DOI: 10.4064/cm118-2-16


The aim of this short note is to present in terse style the meaning and consequences of the “filling scheme” approach for a probability measure preserving transformation. A cohomological equation encapsulates the argument. We complete and simplify Woś' study (1986) of the reversibility of the ergodic limits when integrability is not assumed. We give short and unified proofs of well known results about the behaviour of ergodic averages, like Kesten's lemma (1975). The strikingly simple proof of the ergodic theorem in one dimension given by Neveu (1979), without any maximal inequality nor clever combinatorics, followed this approach and was the starting point of the present study.


  • Yves DerriennicU.E.B., Mathématiques (U.M.R. CNRS 6205)
    Université de Brest
    6 av. Le Gorgeu
    29238 Brest, France

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek