JEDNOSTKA NAUKOWA KATEGORII A+

Indecomposable representations for extended Dynkin quivers of type ${\widetilde{\mathbb E}}_8$

Tom 124 / 2011

Dawid Kędzierski, Hagen Meltzer Colloquium Mathematicum 124 (2011), 95-116 MSC: Primary 16G20; Secondary 16G70. DOI: 10.4064/cm124-1-7

Streszczenie

We discuss the problem of classification of indecomposable representations for extended Dynkin quivers of type $\widetilde{\mathbb E}_8$, with a fixed orientation. We describe a method for an explicit determination of all indecomposable preprojective and preinjective representations for those quivers over an arbitrary field and for all indecomposable representations in case the field is algebraically closed. This method uses tilting theory and results about indecomposable modules for a canonical algebra of type $(5,3,2)$ obtained by Kussin and Meltzer and by Komoda and Meltzer. Using these techniques we calculate all series of preprojective indecomposable representations of rank $6$. The same method has been used by Kussin and Meltzer to determine indecomposable representations for extended Dynkin quivers of type $\widetilde{\mathbb D}_n$ and $\widetilde{\mathbb E}_6$. Moreover, our techniques can be applied to calculate indecomposable representations of extended Dynkin quivers of type $\widetilde{\mathbb E}_7$. The indecomposable representations for extended Dynkin quivers of type $\widetilde{\mathbb A}_n$ are known.

Autorzy

  • Dawid KędzierskiInstitute of Mathematics
    Szczecin University
    Wielkopolska 15
    70-451 Szczecin, Poland
    e-mail
  • Hagen MeltzerInstitute of Mathematics
    Szczecin University
    Wielkopolska 15
    70-451 Szczecin, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek