Operator entropy inequalities

Tom 130 / 2013

M. S. Moslehian, F. Mirzapour, A. Morassaei Colloquium Mathematicum 130 (2013), 159-168 MSC: Primary 47A63; Secondary 15A42, 46L05, 47A30. DOI: 10.4064/cm130-2-2

Streszczenie

We investigate a notion of relative operator entropy, which develops the theory started by J. I. Fujii and E. Kamei [Math. Japonica 34 (1989), 341–348]. For two finite sequences $\mathbf{A}=(A_1,\ldots,A_n)$ and $\mathbf{B}=(B_1,\ldots,B_n)$ of positive operators acting on a Hilbert space, a real number $q$ and an operator monotone function $f$ we extend the concept of entropy by setting $$\def\mfrac#1#2{#1/#2} S_q^f(\mathbf{A}\,|\,\mathbf{B}):=\sum_{j=1}^nA_j^{\mfrac{1}{2}} (A_j^{-\mfrac{1}{2}}B_jA_j^{-\mfrac{1}{2}})^qf(A_j^{-\mfrac{1}{2}}B_jA_j^{-\mfrac{1}{2}})A_j^{\mfrac{1}{2}} , $$ and then give upper and lower bounds for $S_q^f(\mathbf{A}\,|\,\mathbf{B})$ as an extension of an inequality due to T. Furuta [Linear Algebra Appl. 381 (2004), 219–235] under certain conditions. As an application, some inequalities concerning the classical Shannon entropy are deduced.

Autorzy

  • M. S. MoslehianDepartment of Pure Mathematics
    Center of Excellence in Analysis on Algebraic Structures
    Ferdowsi University of Mashhad
    P.O. Box 1159
    Mashhad 91775, Iran
    e-mail
    e-mail
  • F. MirzapourDepartment of Mathematics
    Faculty of Sciences
    University of Zanjan
    P.O. Box 45195-313
    Zanjan, Iran
    e-mail
  • A. MorassaeiDepartment of Mathematics
    Faculty of Sciences
    University of Zanjan
    P.O. Box 45195-313
    Zanjan, Iran
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek