Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Continuity of halo functions associated to homothecy invariant density bases

Tom 134 / 2014

Oleksandra Beznosova, Paul Hagelstein Colloquium Mathematicum 134(2014), 235-243 MSC: Primary 42B25. DOI: 10.4064/cm134-2-7

Streszczenie

Let $\mathcal{B}$ be a collection of bounded open sets in $\mathbb{R}^{n}$ such that, for any $x \in \mathbb{R}^{n}$, there exists a set $U \in \mathcal{B}$ of arbitrarily small diameter containing $x$. The collection $\mathcal{B}$ is said to be a density basis provided that, given a measurable set $A \subset \mathbb{R}^{n}$, for a.e. $x \in \mathbb{R}^{n}$ we have $$ \lim_{k \rightarrow \infty}\frac{1}{|R_{k}|}\int_{R_{k}}\chi_{A} = \chi_{A}(x) $$ for any sequence $\{R_{k}\}$ of sets in $\mathcal{B}$ containing $x$ whose diameters tend to 0. The geometric maximal operator $M_{\mathcal{B}}$ associated to $\mathcal{B}$ is defined on $L^{1}(\mathbb{R}^n)$ by \[ M_{\mathcal{B}}f(x) = \sup_{x \in R \in \mathcal{B}}\frac{1}{|R|}\int_{R}|f|. \] The halo function $\phi$ of $\mathcal{B}$ is defined on $(1,\infty)$ by $$ \phi(u) = \sup \left\{\frac{1}{|A|}\left|\left\{x \in \mathbb{R}^{n} : M_{\mathcal{B}}\chi_{A}(x) > \frac{1}{u}\right\}\right| : 0 < |A| < \infty\right\} $$ and on $[0,1]$ by $\phi(u) = u$. It is shown that the halo function associated to any homothecy invariant density basis is a continuous function on $(1,\infty)$. However, an example of a homothecy invariant density basis is provided such that the associated halo function is not continuous at 1.

Autorzy

  • Oleksandra BeznosovaDepartment of Mathematics
    Baylor University
    Waco, TX 76798, U.S.A.
    e-mail
  • Paul HagelsteinDepartment of Mathematics
    Baylor University
    Waco, TX 76798, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek