Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

On the index of length four minimal zero-sum sequences

Tom 135 / 2014

Caixia Shen, Li-meng Xia, Yuanlin Li Colloquium Mathematicum 135 (2014), 201-209 MSC: Primary 11B50; Secondary 20K01. DOI: 10.4064/cm135-2-4

Streszczenie

Let $G$ be a finite cyclic group. Every sequence $S$ over $G$ can be written in the form $S=(n_1g)\cdot\ldots\cdot(n_lg)$ where $g\in G$ and $n_1, \ldots, n_l\in[1, {\rm ord}(g)]$, and the index ${\rm ind}(S)$ is defined to be the minimum of $(n_1+\cdots+n_l)/{\rm ord}(g)$ over all possible $g\in G$ such that $\langle g \rangle =G$. A conjecture says that every minimal zero-sum sequence of length 4 over a finite cyclic group $G$ with ${\rm gcd}(|G|, 6)=1$ has index 1. This conjecture was confirmed recently for the case when $|G|$ is a product of at most two prime powers. However, the general case is still open. In this paper, we make some progress towards solving the general case. We show that if $G=\langle g\rangle$ is a finite cyclic group of order $|G|= n$ such that ${\rm gcd}(n,6)=1$ and $S=(x_1g)\cdot(x_2g)\cdot(x_3g)\cdot(x_4g)$ is a minimal zero-sum sequence over $G$ such that $x_1,\dots,x_4\in[1,n-1]$ with ${\rm gcd}(n,x_1,x_2,x_3,x_4)=1$, and ${\rm gcd}(n,x_i)>1$ for some $i\in[1,4]$, then ${\rm ind}(S)=1$. By using a new method, we give a much shorter proof to the index conjecture for the case when $|G|$ is a product of two prime powers.

Autorzy

  • Caixia ShenFaculty of Science
    Jiangsu University
    Zhenjiang, 212013, Jiangsu Prov., China
    e-mail
  • Li-meng XiaFaculty of Science
    Jiangsu University
    Zhenjiang, 212013, Jiangsu Prov., China
    e-mail
  • Yuanlin LiDepartment of Mathematics
    Brock University
    St. Catharines, ON
    Canada L2S 3A1
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek