Wydawnictwa / Czasopisma IMPAN / Colloquium Mathematicum / Wszystkie zeszyty

Colloquium Mathematicum

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

On delta sets and their realizable subsets in Krull monoids with cyclic class groups

Tom 137 / 2014

Colloquium Mathematicum 137 (2014), 137-146 MSC: Primary 20M13; Secondary 20M14, 11R27, 13F05. DOI: 10.4064/cm137-1-10

Streszczenie

Let $M$ be a commutative cancellative monoid. The set $\varDelta (M)$, which consists of all positive integers which are distances between consecutive factorization lengths of elements in $M$, is a widely studied object in the theory of nonunique factorizations. If $M$ is a Krull monoid with cyclic class group of order $n \ge 3$, then it is well-known that $\varDelta (M)\subseteq \{1, \ldots , n-2\}$. Moreover, equality holds for this containment when each class contains a prime divisor from $M$. In this note, we consider the question of determining which subsets of $\{1, \ldots , n-2\}$ occur as the delta set of an individual element from $M$. We first prove for $x\in M$ that if $n-2\in \varDelta (x)$, then $\varDelta (x)=\{n-2\}$ (i.e., not all subsets of $\{1, \ldots , n-2\}$ can be realized as delta sets of individual elements). We close by proving an Archimedean-type property for delta sets from Krull monoids with finite cyclic class group: for every natural number $m$, there exist a Krull monoid $M$ with finite cyclic class group such that $M$ has an element $x$ with $|\varDelta (x)| \ge m$.

Autorzy

• Scott T. ChapmanDepartment of Mathematics
Sam Houston State University
Box 2206
Huntsville, TX 77341, U.S.A.
e-mail
• Felix GottiDepartment of Mathematics
University of Florida
Gainesville, FL 32611, U.S.A.
e-mail
• Roberto PelayoMathematics Department
University of Hawai`i at Hilo
Hilo, HI 96720, U.S.A.
e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka Odśwież obrazek