Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

On the extent of separable, locally compact, selectively $(a)$-spaces

Tom 141 / 2015

Samuel G. da Silva Colloquium Mathematicum 141 (2015), 199-208 MSC: Primary 54D45, 54A25, 03E05; Secondary 54A35, 03E65, 03E17. DOI: 10.4064/cm141-2-5

Streszczenie

The author has recently shown (2014) that separable, selectively $(a)$-spaces cannot include closed discrete subsets of size $\mathfrak {c}$. It follows that, assuming $\mathbf {CH}$, separable selectively $(a)$-spaces necessarily have countable extent. However, in the same paper it is shown that the weaker hypothesis ‶$2^{\aleph _0} < 2^{\aleph _1}$″ is not enough to ensure the countability of all closed discrete subsets of such spaces. In this paper we show that if one adds the hypothesis of local compactness, a specific effective (i.e., Borel) parametrized weak diamond principle implies countable extent in this context.

Autorzy

  • Samuel G. da SilvaInstituto de Matemática
    Universidade Federal da Bahia
    Av. Adhemar de Barros, S/N, Ondina
    CEP 40170-110, Salvador, BA, Brazil
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek