Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

When the flat and Gorenstein flat dimensions coincide?

Tom 147 / 2017

Samir Bouchiba Colloquium Mathematicum 147 (2017), 77-85 MSC: 13D02, 13D05, 13D07, 16E05, 16E10. DOI: 10.4064/cm6833-3-2016 Opublikowany online: 9 December 2016

Streszczenie

It is well known that, given a ring $R$, if $M$ is an $R$-module such that pd$_R(M) \lt \infty $, then Gid$_R(M)= \mathrm {id}_R(M)$ (Holm, 2004). This shows in particular that if $R$ is a Noetherian ring such that Gid$(R) \lt \infty $, then $R$ is Gorenstein. Dually, if $M$ is an $R$-module such that $\mathrm {id}_R(M) \lt \infty $, then Gpd$_R(M)=$ pd$_R(M)$ (Holm, 2004). Regarding the Gorenstein flat dimension, there have been no appropriate analogs of these two theorems. The unique result, in this vein, states, under the strong hypothesis of $R$ being a left and right coherent ring with finite right finitistic projective dimension, that Gfd$_R(M)= \mathrm {fd}_R(M)$ for any $R$-module $M$ such that $\mathrm {id}_R(M) \lt \infty $ (Holm, 2004).

We give the appropriate analogs of the above two formulas for the Gorenstein flat dimension. Actually, in the general setting, we prove that if $M$ is an $R$-module admitting a short flat resolution $0\rightarrow K\rightarrow F_{n-1}\rightarrow F_{n-2}\rightarrow \cdots \rightarrow F_0\rightarrow M\rightarrow 0$ such that $K$ is Gorenstein flat and fd$_R(M^+) \lt \infty $, then $K$ is flat and Gfd$_R(M)=$ fd$_R(M)$, where $A^+$ stands for the Pontryagin dual Hom$_{\mathbb {Z}}(A,{\mathbb {Q}/\mathbb {Z}})$ of a module $A$. This implies, in particular, that if $R$ is a left GF-closed ring, then Gfd$_R(M)=$ fd$_R(M)$ for any $R$-module $M$ such that fd$_R(M^+) \lt \infty $. Dually, we prove that if $R$ is left GF-closed, then Gfd$_R(N^+)=$ fd$_R(N^+)$ for any $R$-module $N$ such that fd$_R(N) \lt \infty $.

Autorzy

  • Samir BouchibaDepartment of Mathematics
    Faculty of Sciences
    University Moulay Ismail
    50000 Meknes, Morocco
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek