JEDNOSTKA NAUKOWA KATEGORII A+

# Wydawnictwa / Czasopisma IMPAN / Colloquium Mathematicum / Wszystkie zeszyty

## Colloquium Mathematicum

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

## The tension field of the conformal Gauss map

### Tom 167 / 2022

Colloquium Mathematicum 167 (2022), 207-218 MSC: Primary 53A10; Secondary 53B30. DOI: 10.4064/cm7955-11-2020 Opublikowany online: 28 May 2021

#### Streszczenie

Let $x:M^{m}\rightarrow S^{m+1}$ be an $m$-dimensional hypersurface isometrically immersed in an $(m+1)$-dimensional unit sphere. The smooth map $$\varphi =(H,Hx+e_{m+1}):M^{m}\rightarrow S^{m+2}_{1}$$ is called the conformal Gauss map of $x$, where $S^{m+2}_{1}$ is the $(m+2)$-dimensional de Sitter space, $H$ the mean curvature and $e_{m+1}$ the local normal frame field of $x$. Given the Möbius metric on $M^{m}$, the harmonicity of $\varphi$ has some connection with the fact that the immersion $x$ is Willmore. In this paper, by pulling the metric back via $x$, we study the tension field of the conformal Gauss map, and prove that the conformal Gauss map is harmonic if and only if $x$ is a minimal immersion. Finally, we give some examples for which the conformal Gauss map is harmonic in $S^{3}$.

#### Autorzy

• Jianbo FangSchool of Mathematics and Statistics
Guizhou University of Finance and Economics
Guiyang, 550025, China
e-mail
• Lin LiangPersonnel Division
Chuxiong Normal University
Chuxiong, 675000, China
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

## Przepisz kod z obrazka Odśwież obrazek