Classification of multiplicative Lie algebra structures on a finite group
Tom 168 / 2022
                    
                    
                        Colloquium Mathematicum 168 (2022), 25-34                    
                                        
                        MSC: 15A75, 19C09, 20F12.                    
                                        
                        DOI: 10.4064/cm8397-12-2020                    
                                            
                            Opublikowany online: 5 August 2021                        
                                    
                                                Streszczenie
Every multiplicative Lie algebra structure on a group $G$ determines a group homomorphism from the exterior square $G\wedge G$ to $G$. We give a precise characterization of the group homomorphisms $G \wedge G \rightarrow G$ which determine a multiplicative Lie algebra structure on $G$. For certain finite groups, we determine the number of possible images (up to isomorphism) of such structure-defining maps.
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            