JEDNOSTKA NAUKOWA KATEGORII A+

An addendum and corrigendum to “Almost free splitters" (Colloq. Math. 81 (1999), 193–221)

Tom 88 / 2001

Rüdiger Göbel, Saharon Shelah Colloquium Mathematicum 88 (2001), 155-158 MSC: Primary 13C05, 18E40, 18G05, 20K20, 20K35, 20K40; Secondary 13D30, 18G25, 20K25, 20K30, 13C10. DOI: 10.4064/cm88-1-11

Streszczenie

Let $R$ be a subring of the rational numbers ${\mathbb Q}$. We recall from \cite{GS2} that an $R$-module $G$ is a splitter if ${\rm Ext}^1_R(G,G) = 0$. In this note we correct the statement of Main Theorem 1.5 in \cite{GS2} and discuss the existence of non-free splitters of cardinality $\aleph_1$ under the negation of the special continuum hypothesis CH.

Autorzy

  • Rüdiger GöbelFachbereich 6
    Mathematik und Informatik
    Universität Essen
    45117 Essen, Germany
    e-mail
  • Saharon ShelahHebrew University
    91904 Jerusalem, Israel
    and
    Department of Mathematics
    Rutgers University
    New Brunswick, NJ 08854, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek