JEDNOSTKA NAUKOWA KATEGORII A+

# Wydawnictwa / Czasopisma IMPAN / Colloquium Mathematicum / Wszystkie zeszyty

## Towards Bauer's theorem for linear recurrence sequences

### Tom 98 / 2003

Colloquium Mathematicum 98 (2003), 163-169 MSC: 11A05, 11A41, 11B37. DOI: 10.4064/cm98-2-3

#### Streszczenie

Consider a recurrence sequence $(x_k)_{k\in{\mathbb Z}}$ of integers satisfying $x_{k+n}=a_{n-1}x_{k+n-1}+\ldots +a_1x_{k+1}+a_0x_k$, where $a_0,a _1,\ldots,a_{n-1}\in{\mathbb Z}$ are fixed and $a_0\in\{-1,1\}$. Assume that $x_k>0$ for all sufficiently large $k$. If there exists $k_0\in{\mathbb Z}$ such that $x_{k_0}<0$ then for each negative integer $-D$ there exist infinitely many rational primes $q$ such that $q\,|\, x_k$ for some $k\in{\mathbb N}$ and $(\frac{-D}{q})=-1$.

#### Autorzy

• Mariusz SkałbaDepartment of Mathematics, Computer Science and Mechanics
University of Warsaw
Banacha 2
02-097 Warszawa, Poland
e-mail
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Odśwież obrazek