Endpoint mapping properties of the Littlewood–Paley square function

Odysseas Bakas Colloquium Mathematicum MSC: Primary 42B25, 42B15. DOI: 10.4064/cm7396-4-2018 Opublikowany online: 14 February 2019

Streszczenie

We give an alternative proof of a theorem due to Bourgain concerning the growth of the constant in the Littlewood–Paley inequality on $\mathbb {T}$ as $p \rightarrow 1^+$. Our argument is based on the endpoint mapping properties of Marcinkiewicz multiplier operators, obtained by Tao and Wright, and on Tao’s converse extrapolation theorem. Our method also establishes the growth of the constant in the Littlewood–Paley inequality on $\mathbb {T}^n$ as $p \rightarrow 1^+$. Furthermore, we obtain sharp weak-type inequalities for the Littlewood–Paley square function on $\mathbb {T}^n$, but when $n \geq 2$, the weak-type endpoint estimate on the product Hardy space over the $n$-torus fails, in contrast to what happens when $n=1$.

Autorzy

  • Odysseas BakasDepartment of Mathematics
    Stockholm University
    106 91 Stockholm, Sweden
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek