On asymptotic bases and minimal asymptotic bases

Min Tang, Deng-Rong Ling Colloquium Mathematicum MSC: Primary 11B13. DOI: 10.4064/cm8321-9-2021 Opublikowany online: 20 April 2022

Streszczenie

Let $\mathbb {N}=\{0,1,2,\ldots \}$ and $A\subset \mathbb {N}$. Let $h\geq 2$ and let $r_h(A,n)=\sharp \{ (a_1,\ldots ,a_h) \in A^{h}: a_1+\cdots +a_h=n\}.$ The set $A$ is called an asymptotic basis of order $h$ if $r_h(A,n)\geq 1$ for all sufficiently large integers $n$. An asymptotic basis $A$ of order $h$ is minimal if no proper subset of $A$ is an asymptotic basis of order $h$. Recently, Chen and Tang resolved a problem of Nathanson on minimal asymptotic bases of order $h$. In this paper, we generalize this result to $g$-adic representations.

Autorzy

  • Min TangSchool of Mathematics and Statistics
    Anhui Normal University
    Wuhu 241002, P.R. China
    e-mail
  • Deng-Rong LingSchool of Mathematics and Statistics
    Anhui Normal University
    Wuhu 241002, P.R. China
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek