A note on the Jacobian Conjecture
Tom 170 / 2022
                    
                    
                        Colloquium Mathematicum 170 (2022), 85-90                    
                                        
                        MSC: Primary 14R15.                    
                                        
                        DOI: 10.4064/cm8671-12-2021                    
                                            
                            Opublikowany online: 25 April 2022                        
                                    
                                                Streszczenie
Let $F:\mathbb C^n\to \mathbb C^n$ be a polynomial mapping with non-vanishing Jacobian. If the set $S_F$ of non-properness of $F$ is smooth, then $F$ is a surjective mapping. Moreover, if $S_F$ is connected, then $\chi (S_F) \gt 0.$ Additionally, if $n=2$, then $S_F$ cannot be a curve without self-intersections.