JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Structured, compactly supported Banach frame decompositions of decomposition spaces

Tom 575 / 2022

Felix Voigtlaender Dissertationes Mathematicae 575 (2022), 1-179 MSC: Primary 42B35, 42C15; Secondary 42C40, 46E15, 46E35. DOI: 10.4064/dm804-5-2021 Opublikowany online: 3 March 2022

Streszczenie

This paper presents a framework for constructing structured, possibly compactly supported Banach frames and atomic decompositions for decomposition spaces. Such a decomposition space $\def\DecompSp#1#2#3#4{{\mathcal{D}({#1},L_{#4}^{#2},{#3})}}\DecompSp{\mathcal Q}p{\ell_{w}^{q}}{}$ is defined using a frequency covering $\mathcal Q = (Q_{i})_{i\in I}$ and a suitable weight $w = (w_{i} )_{i\in I}$: If $ (\varphi_{i} )_{i\in I}$ is a suitable partition of unity subordinate to $\mathcal Q$, then the decomposition space norm is given by $\def\DecompSp#1#2#3#4{{\mathcal{D}({#1},L_{#4}^{#2},{#3})}} \Vert g \Vert_{\DecompSp{\mathcal Q}p{\ell_{w}^{q}}{}} =\Vert ( w_{i} \cdot \Vert \mathcal{F} ^{-1} ( \varphi_{i} \cdot \widehat{g} \, ) \Vert_{L^{p}} )_{i\in I} \Vert_{\ell^{q}} . $ We assume $\mathcal Q= (T_{i}Q+b_{i} )_{i\in I}$, with $T_{i}\in{\rm GL} (\mathbb R^{d} )$ and $b_{i}\in\mathbb R^{d}$.

Given a prototype $\gamma$, we provide characterizations of the spaces $\def\DecompSp#1#2#3#4{{\mathcal{D}({#1},L_{#4}^{#2},{#3})}}\DecompSp{\mathcal Q}p{\ell_{w}^{q}}{}$ using a system of the form \[ \Psi_{c}= (L_{c\cdot T_{i}^{-T}k}\,\gamma^{ [i ]} )\quad\text{where}\quad\gamma^{ [i ]}= |\!\det T_{i} |^{1/2}\cdot M_{b_{i}} (\gamma\circ{T_{i}^{T}} ), \] with translation $L_{x}$ and modulation $M_{\xi}$. We provide verifiable conditions on $\gamma$ under which $\Psi_{c}$ forms a Banach frame or an atomic decomposition for $\def\DecompSp#1#2#3#4{{\mathcal{D}({#1},L_{#4}^{#2},{#3})}}\DecompSp{\mathcal Q}p{\ell_{w}^{q}}{}$, for small enough sampling density $c \gt 0$. Our theory allows compactly supported prototypes and applies to arbitrary $p,q\in (0,\infty ]$. In many cases, $\Psi_{c}$ forms both a Banach frame and an atomic decomposition, so that analysis sparsity is equivalent to synthesis sparsity, that is, the analysis coefficients $ ( \langle f,L_{c\cdot T_{i}^{-T}k}\,\gamma^{ [i ]} \rangle )_{i\in I,\,k\in\mathbb Z^{d}}$ lie in $\ell^{p}$ if and only if $f$ belongs to a certain decomposition space, if and only if $f=\sum_{i,k}c_{k}^{ (i )}\,L_{c\cdot T_{i}^{-T}k}\,\gamma^{ [i ]}$ with $ (\smash{c_{k}^{ (i )}} )_{i\in I,\,k\in\mathbb Z^{d}}\in\ell^{p}$. This is convenient for example when only analysis sparsity is known to hold: Generally, this only yields synthesis sparsity with respect to the dual frame, about which often only little is known. In contrast, our theory yields synthesis sparsity with respect to the well-understood primal frame. In particular, our theory applies to $\alpha$-modulation spaces and inhomogeneous Besov spaces. It also applies to cone-adapted shearlet frames, as we show in the companion paper Analysis vs. synthesis sparsity for $\alpha$-shearlets [arXiv:1702.03559 (2017)].

Autorzy

  • Felix VoigtlaenderFaculty of Mathematics
    University of Vienna
    Oskar Morgenstern Platz 1
    1090 Vienna, Austria
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek