# Wydawnictwa / Czasopisma IMPAN / Studia Mathematica / Wszystkie zeszyty

## Pointwise multipliers on weighted BMO spaces

### Tom 125 / 1997

Studia Mathematica 125 (1997), 35-56 DOI: 10.4064/sm-125-1-35-56

#### Streszczenie

Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p < ∞ and for $ϕ: X×ℝ_{+} → ℝ_{+}$, we denote by $bmo_{ϕ,p}(X)$ the set of all functions $f ∈ L^{p}_{loc}(X)$ such that $sup_{a ∈ X, r>0} 1/ϕ(a,r) (1/μ(B(a,r)) ʃ_{B(a,r)} |f(x) -f_{B(a,r)}|^p dμ)^{1/p} < ∞$, where B(a,r) is the ball centered at a and of radius r, and $f_{B(a,r)}$ is the integral mean of f on B(a,r). Let $bmo_{ϕ}(X) = bmo_{ϕ,1}(X)$ and $bmo(X) = bmo_{1,1}(X)$. In this paper, we characterize $PWM(bmo_{ϕ1,p_1}(X), bmo_{ϕ2,p_2}(X))$. The following are examples of our results. \$PWM(bmo_{(log(1/r))^{-α}}(

• Eiichi Nakai

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

## Przepisz kod z obrazka Odśwież obrazek