Fragmentability and compactness in C(K)-spaces

Tom 131 / 1998

B. Cascales Studia Mathematica 131 (1998), 73-87 DOI: 10.4064/sm-131-1-73-87

Streszczenie

Let K be a compact Hausdorff space, $C_p(K)$ the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and $t_p(D)$ the topology in C(K) of pointwise convergence on D. It is proved that when $C_p(K)$ is Lindelöf the $t_p(D)$-compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and $C_p(K)$ is Lindelöf, then K is metrizable if, and only if, there is a countable and dense subset D ⊂ K such that $(C(K),t_p(D))$ is analytic. We also show that if K is a separable Rosenthal compact space, then K is metrizable if, and only if, $C_p(K)$ is Lindelöf. We complete our study by showing that if K does not contain a copy of βℕ, then convex $t_p(D)$-compact subsets of C(K) have the weak Radon-Nikodym property.

Autorzy

  • B. Cascales

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek