Interpolation by bivariate polynomials based on Radon projections

Tom 162 / 2004

B. Bojanov, I. K. Georgieva Studia Mathematica 162 (2004), 141-160 MSC: 41A05, 41A63. DOI: 10.4064/sm162-2-3

Streszczenie

For any given set of angles $\theta _0 < \ldots < \theta _n$ in $[0, \pi )$, we show that a set of ${n+2 \choose 2}$ Radon projections, consisting of $k$ parallel $X$-ray beams in each direction $\theta _k$, $k=0, \ldots , n$, determines uniquely algebraic polynomials of degree $n$ in two variables.

Autorzy

  • B. BojanovDepartment of Mathematics
    University of Sofia
    Blvd. James Boucher 5
    1164 Sofia, Bulgaria
    e-mail
  • I. K. GeorgievaInstitute of Mathematics
    Bulgarian Academy of Sciences
    Akad. G. Bonchev St., bl. 8
    1113 Sofia, Bulgaria
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek