JEDNOSTKA NAUKOWA KATEGORII A+

Generalizations of Cesàro means and poles of the resolvent

Tom 164 / 2004

Laura Burlando Studia Mathematica 164 (2004), 257-281 MSC: Primary 47A35, 47A10. DOI: 10.4064/sm164-3-5

Streszczenie

An improvement of the generalization—obtained in a previous article [Bu1] by the author—of the uniform ergodic theorem to poles of arbitrary order is derived. In order to answer two natural questions suggested by this result, two examples are also given. Namely, two bounded linear operators $T$ and $A$ are constructed such that $n^{-2}T^n$ converges uniformly to zero, the sum of the range and the kernel of $1-T$ being closed, and $n^{-3}\sum _{k=0}^ {n-1}A^k$ converges uniformly, the sum of the range of $1-A$ and the kernel of ${(1-A)}^2$ being closed. Nevertheless, $1$ is a pole of the resolvent of neither $T$ nor $A$.

Autorzy

  • Laura BurlandoDipartimento di Matematica dell'Università di Genova
    Via Dodecaneso 35
    16146 Genova, Italy
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek