JEDNOSTKA NAUKOWA KATEGORII A+

# Wydawnictwa / Czasopisma IMPAN / Studia Mathematica / Wszystkie zeszyty

## Long time existence of regular solutions to Navier–Stokes equations in cylindrical domains under boundary slip conditions

### Tom 169 / 2005

Studia Mathematica 169 (2005), 243-285 MSC: 35Q35, 76D03, 76D05. DOI: 10.4064/sm169-3-3

#### Streszczenie

Long time existence of solutions to the Navier–Stokes equations in cylindrical domains under boundary slip conditions is proved. Moreover, the existence of solutions with no restrictions on the magnitude of the initial velocity and the external force is shown. However, we have to assume that the quantity $$I=\sum_{i=1}^2(\|\partial_{x_3}^iv(0)\|_{L_2({\mit\Omega})}+ \|\partial_{x_3}^if\|_{L_2({\mit\Omega}\times(0,T))})$$ is sufficiently small, where $x_3$ is the coordinate along the axis parallel to the cylinder. The time of existence is inversely proportional to $I$. Existence of solutions is proved by the Leray–Schauder fixed point theorem applied to problems for $h^{(i)}=\partial_{x_3}^iv$, $q^{(i)}=\partial_{x_3}^ip$, $i=1,2$, which follow from the Navier–Stokes equations and corresponding boundary conditions. Existence is proved in Sobolev–Slobodetskiĭ spaces: $h^{(i)}\in W_\delta^{2+\beta,1+\beta/2}({\mit\Omega}\times(0,T))$, where $i=1,2$, $\beta\in(0,1)$, $\delta\in(1,2)$, $5/\delta<3+\beta$, $3/\delta<2+\beta$.

#### Autorzy

• W. M. ZajączkowskiInstitute of Mathematics
00-956 Warszawa, Poland
and
Institute of Mathematics and Cryptology
Military University of Technology
Kaliskiego 2
00-908 Warszawa, Poland
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Odśwież obrazek