Jordan isomorphisms and maps preserving spectra of certain operator products

Tom 184 / 2008

Jinchuan Hou, Chi-Kwong Li, Ngai-Ching Wong Studia Mathematica 184 (2008), 31-47 MSC: Primary 47B49, 47A12. DOI: 10.4064/sm184-1-2

Streszczenie

Let $\mathcal{A}_1, \mathcal{A}_2$ be (not necessarily unital or closed) standard operator algebras on locally convex spaces $X_1, X_2$, respectively. For $k \ge 2$, consider different products $T_1* \cdots *T_k$ on elements in ${\cal A}_i$, which covers the usual product $T_1* \cdots *T_k = T_1\cdots T_k$ and the Jordan triple product $T_1*T_2 = T_2T_1T_2$. Let ${\mit\Phi} :\mathcal{A}_1\rightarrow\mathcal{A}_2$ be a (not necessarily linear) map satisfying $\sigma({\mit\Phi}(A_1)*\cdots *{\mit\Phi}(A_k)) =\sigma(A_1*\cdots *A_k)$ whenever any one of $A_i$'s has rank at most one. It is shown that if the range of ${\mit\Phi}$ contains all rank one and rank two operators then ${\mit\Phi}$ must be a Jordan isomorphism multiplied by a root of unity. Similar results for self-adjoint operators acting on Hilbert spaces are obtained.

Autorzy

  • Jinchuan HouDepartment of Mathematics
    Taiyuan University of Technology
    Taiyuan 030024, P.R. of China
    e-mail
  • Chi-Kwong LiDepartment of Mathematics
    The College of William & Mary
    Williamsburg, VA 13185, U.S.A.
    e-mail
  • Ngai-Ching WongDepartment of Applied Mathematics
    National Sun Yat-sen University
    and National Center for Theoretical Sciences
    Kaohsiung 80424, Taiwan
    and
    Department of Mathematics
    The Chinese University of Hong Kong
    Hong Kong
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek