Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden–Fowler equations

Tom 191 / 2009

Alexandru Kristály, Vicenţiu Rădulescu Studia Mathematica 191 (2009), 237-246 MSC: 58J05, 35J60. DOI: 10.4064/sm191-3-5


Let $(M,g)$ be a compact Riemannian manifold without boundary, with $\dim M\geq 3,$ and $f:\mathbb R \to \mathbb R$ a continuous function which is {sublinear} at infinity. By various variational approaches, existence of multiple solutions of the eigenvalue problem $$-{\mit\Delta}_{g} \omega+\alpha (\sigma) \omega= \tilde K(\lambda,\sigma)f(\omega),\ \quad \sigma\in M,\, \omega\in H_1^2(M),$$ is established for certain eigenvalues $\lambda>0$, depending on further properties of $f$ and on explicit forms of the function $\tilde K.$ Here, ${\mit\Delta}_{g}$ stands for the Laplace–Beltrami operator on $(M,g),$ and $\alpha,$ $\tilde K$ are smooth positive functions. These multiplicity results are then applied to solve Emden–Fowler equations which involve sublinear terms at infinity.


  • Alexandru KristályDepartment of Economics
    University of Babeş-Bolyai
    400591 Cluj-Napoca, Romania
  • Vicenţiu RădulescuInstitute of Mathematics “Simion Stoilow"
    of the Romanian Academy
    014700 Bucureşti, Romania
    Department of Mathematics
    University of Craiova
    200585 Craiova, Romania

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek