Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Multiple disjointness and invariant measures on minimal distal flows

Tom 228 / 2015

Juho Rautio Studia Mathematica 228 (2015), 153-175 MSC: Primary 37B05; Secondary 43A60. DOI: 10.4064/sm228-2-4

Streszczenie

We examine multiple disjointness of minimal flows, that is, we find conditions under which the product of a collection of minimal flows is itself minimal. Our main theorem states that, for a collection $\{X_i\}_{i \in I}$ of minimal flows with a common phase group, assuming each flow satisfies certain structural and algebraic conditions, the product $\prod_{i \in I} X_i$ is minimal if and only if $\prod_{i \in I} X_i^{\rm eq}$ is minimal, where $X_i^{\rm eq}$ is the maximal equicontinuous factor of $X_i$. Most importantly, this result holds when each $X_i$ is distal. When the phase group $T$ is $\mathbb Z$ or $\mathbb R$, we can apply this idea to construct large minimal distal product flows with many ergodic measures. We determine the exact cardinality of (ergodic) invariant measures on the universal minimal distal $T$-flow. Equivalently, we determine the cardinality of (extreme) invariant means on $\mathcal D(T)$, the space of distal functions on $T$. This cardinality is $2^{\mathfrak{c}}$ for both ergodic and invariant measures. The size of the quotient of $\mathcal D(T)$ by a closed subspace with a unique invariant mean is found to be non-separable by using the same techniques.

Autorzy

  • Juho RautioDepartment of Mathematical Sciences
    University of Oulu
    PL 8000, FI-90014 Oulun yliopisto, Finland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek