JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Extensions and the weak Calkin algebra of Read’s Banach space admitting discontinuous derivations

Tom 236 / 2017

Niels Jakob Laustsen, Richard Skillicorn Studia Mathematica 236 (2017), 51-62 MSC: Primary 46H10, 46M18, 47L10; Secondary 16S70. DOI: 10.4064/sm8554-9-2016 Opublikowany online: 10 November 2016

Streszczenie

Read produced the first example of a Banach space $E_{\text{R}}$ such that the associated Banach algebra $\mathscr{B}(E_{\text{R}})$ of bounded operators admits a discontinuous derivation (J. London Math. Soc., 1989). We generalize Read’s main theorem about $\mathscr{B}(E_{\text{R}})$ from which he deduced this conclusion, as well as the key technical lemmas that his proof relied on, by constructing a strongly split-exact sequence \[ \{0\}\rightarrow\mathscr{W}(E_{\text{R}}) \rightarrow\mathscr{B}(E_{\text{R}}) \leftrightarrows \ell_2^\sim\rightarrow\{0\}, \] where $\mathscr{W}(E_{\text{R}})$ denotes the ideal of weakly compact operators on $E_{\text{R}}$, while $\ell_2^\sim$ is the unitization of the Hilbert space $\ell_2$, endowed with the zero product.

Autorzy

  • Niels Jakob LaustsenDepartment of Mathematics and Statistics
    Fylde College
    Lancaster University
    Lancaster LA1 4YF, United Kingdom
    e-mail
  • Richard SkillicornDepartment of Mathematics and Statistics
    Fylde College
    Lancaster University
    Lancaster LA1 4YF, United Kingdom
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek