Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Sharp estimates for pseudo-differential operators of type $(1,1)$ on Triebel–Lizorkin and Besov spaces

Tom 250 / 2020

Bae Jun Park Studia Mathematica 250 (2020), 129-162 MSC: Primary 42B35; Secondary 42B37. DOI: 10.4064/sm180317-25-11 Opublikowany online: 12 August 2019

Streszczenie

Pseudo-differential operators of type $(1,1)$ and order $m$ are continuous from $F_p^{s+m,q}$ to $F_p^{s,q}$ if $s \gt d/\!\min{(1,p,q)}-d$ for $0 \lt p \lt \infty$, and from $B_p^{s+m,q}$ to $B_{p}^{s,q}$ if $s \gt d/\!\min{(1,p)}-d$ for $0 \lt p\leq\infty$. In this work we extend the $F$-boundedness result to $p=\infty$. Additionally, we prove that the operators map $F_{\infty}^{m,1}$ into bmo when $s=0$, and consider Hörmander’s twisted diagonal condition for arbitrary $s\in\mathbb{R}$. We also prove that the restrictions on $s$ are necessary for the boundedness to hold.

Autorzy

  • Bae Jun ParkSchool of Mathematics
    Korea Institute for Advanced Study
    Seoul, Republic of Korea
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek