Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Sharp Beckner-type inequalities for Cauchy and spherical distributions

Tom 251 / 2020

Dominique Bakry, Ivan Gentil, Grégory Scheffer Studia Mathematica 251 (2020), 219-245 MSC: Primary 60G10, 60-XX; Secondary 58-XX. DOI: 10.4064/sm180503-17-1 Opublikowany online: 17 October 2019

Streszczenie

Using some harmonic extensions on the upper-half plane, probabilistic representations, and curvature-dimension inequalities with negative dimensions, we obtain some new optimal functional inequalities of Beckner type for Cauchy-type distributions on the Euclidean space. These optimal inequalities appear to be equivalent to some non-tight optimal Beckner inequalities on the sphere, and this family of inequalities appears to be a new form of the Sobolev inequality.

Autorzy

  • Dominique BakryInstitut de Mathématiques de Toulouse
    UMR CNRS 5219
    Université de Toulouse - Paul Sabatier
    F-31062 Toulouse, France
    e-mail
  • Ivan GentilUniv Lyon
    Université Claude Bernard Lyon 1
    CNRS UMR 5208
    Institut Camille Jordan
    43 blvd. du 11 novembre 1918
    F-69622 Villeurbanne Cedex, France
    e-mail
  • Grégory SchefferSCOR Investment Partners
    5 avenue Kléber
    75795 Paris Cedex 16, France
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek