# Wydawnictwa / Czasopisma IMPAN / Studia Mathematica / Wszystkie zeszyty

## Studia Mathematica

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

## Density bases associated with Nagel–Stein approach regions

### Tom 251 / 2020

Studia Mathematica 251 (2020), 317-326 MSC: Primary 42B25; Secondary 28A15. DOI: 10.4064/sm181115-20-3 Opublikowany online: 30 October 2019

#### Streszczenie

Let $f$ be an integrable function on $\mathbb {R}^n$ and $u(x,y)$ its associated Poisson integral on the upper half-space $\mathbb {R}_+^{n+1}$. A classical result associated to the work of Fatou is that $u(x,y)$ tends to $f(x^0)$ for a.e. $x^0 \in \mathbb {R}^n$ as $(x,y)$ approaches $(x^0,0)$ nontangentially. On the other hand, Littlewood and later Zygmund showed that this limit does not necessarily hold if $(x,y)$ is allowed to approach $(x^0,0)$ with no restrictions on the nature of the convergence. Subsequently, Nagel and Stein proved the existence of approach regions not contained in any cone for which a.e. convergence does hold, in fact providing a characterization of the approach regions for which the associated maximal function is of weak type $(1,1)$. The purpose of this paper is to give a generalization of Nagel and Stein’s result, and to provide a characterization of the approach regions for which the associated maximal function satisfies so-called “Tauberian conditions”, corresponding to the regions for which a.e. convergence holds provided $f$ is the characteristic function of a set. As a consequence of this characterization, we will see that if an approach region enables a.e. convergence when the associated boundary function is the characteristic function of a set, it also enables a.e. convergence when the boundary function is in $L^p(\mathbb {R}^n)$ for $p \geq 1$.

#### Autorzy

• Paul HagelsteinDepartment of Mathematics
Baylor University
Waco, TX 76798, U.S.A.
e-mail
• Ioannis ParissisDepartamento de Matemáticas
Aptdo. 644
48080 Bilbao, Spain
and
Ikerbasque
Basque Foundation for Science
Bilbao, Spain
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

## Przepisz kod z obrazka Odśwież obrazek