Extensions of convex functions with prescribed subdifferentials
Tom 253 / 2020
                    
                    
                        Studia Mathematica 253 (2020), 199-213                    
                                        
                        MSC: 26B05, 26B25, 49J52, 54C20, 54C60.                    
                                        
                        DOI: 10.4064/sm181212-17-5                    
                                            
                            Opublikowany online: 21 January 2020                        
                                    
                                                Streszczenie
Let $E$ be an arbitrary subset of a Banach space $X$, $f: E \rightarrow \mathbb {R}$ a function, and $G:E \rightrightarrows X^*$ a set-valued mapping. We give necessary and sufficient conditions on $f, G$ for the existence of a continuous convex extension $F: X \rightarrow \mathbb {R} $ of $f$ such that the subdifferential $\partial F$ of $F$ coincides with $G$ on $E.$
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            