Representation of surjective additive isometric embeddings between Hausdorff metric spaces of compact convex subsets in finite-dimensional Banach spaces
Tom 257 / 2021
                    
                    
                        Studia Mathematica 257 (2021), 111-119                    
                                        
                        MSC: Primary 46B04; Secondary 46B20.                    
                                        
                        DOI: 10.4064/sm200326-9-6                    
                                            
                            Opublikowany online: 23 July 2020                        
                                    
                                                Streszczenie
Suppose that $X$ and $Y$ are real finite-dimensional Banach spaces. Let $(\operatorname{cc} (X),H)$ be the metric space of all nonempty compact convex subsets of $X$ equipped with the Hausdorff distance $H$, and let $f:(\operatorname{cc} (X),H)\rightarrow (\operatorname{cc} (Y),H)$ be a surjective additive isometric embedding. Then there is a surjective linear isometric embedding $\overline {f}:X\rightarrow Y$ such that $f(A)=\{\overline {f}(a): a\in A\}$ for every $A\in \operatorname{cc} (X)$.