Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Homomorphisms of Fourier–Stieltjes algebras

Tom 258 / 2021

Ross Stokke Studia Mathematica 258 (2021), 175-220 MSC: Primary 43A30, 43A22, 43A70, 47L25. DOI: 10.4064/sm200206-6-8 Opublikowany online: 4 December 2020

Streszczenie

Every homomorphism $\varphi : B(G) \to B(H)$ between Fourier–Stieltjes algebras on locally compact groups $G$ and $H$ is determined by a continuous mapping $\alpha : Y \to \varDelta(B(G)) $, where $Y$ is a set in the open coset ring of $H$ and $\varDelta(B(G)) $ is the Gelfand spectrum of $B(G)$ (a $*$-semigroup). We exhibit a large collection of maps $\alpha $ for which $\varphi =j_\alpha : B(G) \to B(H)$ is a completely positive/completely contractive/completely bounded homomorphism and establish converse statements in several instances. For example, we fully characterize all completely positive/completely contractive/completely bounded homomorphisms $\varphi : B(G) \to B(H)$ when $G$ is a Euclidean or $p$-adic motion group. In these cases, our description of the completely positive/completely contractive homomorphisms employs the notion of a “fusion map of a compatible system of homomorphisms/affine maps” and is quite different from the Fourier algebra situation.

Autorzy

  • Ross StokkeDepartment of Mathematics and Statistics
    University of Winnipeg
    515 Portage Avenue
    Winnipeg, MB, R3B 2E9, Canada
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek