Asymmetric free spaces and canonical asymmetrizations

Aris Daniilidis, Juan Matías Sepulcre, Francisco Venegas M. Studia Mathematica MSC: Primary 46B20; Secondary 39B82, 46A22. DOI: 10.4064/sm200527-24-11 Opublikowany online: 28 May 2021

Streszczenie

A construction analogous to that of Godefroy–Kalton for metric spaces allows one to embed isometrically, in a canonical way, every quasi-metric space $(X,d)$ in an asymmetric normed space $\mathcal {F}_a(X,d)$ (its quasi-metric free space, also called asymmetric free space or semi-Lipschitz free space). The quasi-metric free space satisfies a universal property (linearization of semi-Lipschitz functions). The (conic) dual of $\mathcal {F}_a(X,d)$ coincides with the non-linear asymmetric dual of $(X,d)$, that is, the space $\operatorname{SLip} _0(X,d)$ of semi-Lipschitz functions on $(X,d)$, vanishing at a base point. In particular, for the case of a metric space $(X,D)$, the above construction yields its usual free space. On the other hand, every metric space $(X,D)$ naturally inherits a canonical asymmetrization coming from its free space $\mathcal {F}(X)$. This gives rise to a quasi-metric space $(X,D_+)$ and an asymmetric free space $\mathcal {F}_a(X,D_+)$. The symmetrization of the latter is isomorphic to the original free space $\mathcal {F}(X)$. The results of this work are illustrated with explicit examples.

Autorzy

  • Aris DaniilidisDIM–CMM, UMI CNRS 2807
    FCFM, Universidad de Chile
    Beauchef 851
    Santiago, Chile
    e-mail
  • Juan Matías SepulcreDepartamento de Matemáticas
    Facultad de Ciencias
    Universidad de Alicante
    Ap. de Correos 99
    03080 Alicante, Spain
    e-mail
  • Francisco Venegas M.DIM–CMM, UMI CNRS 2807
    FCFM, Universidad de Chile
    Beauchef 851
    Santiago, Chile
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek