JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Projections of the uniform distribution on the cube: a large deviation perspective

Tom 264 / 2022

Samuel G. G. Johnston, Zakhar Kabluchko, Joscha Prochno Studia Mathematica 264 (2022), 103-119 MSC: Primary 60F10; Secondary 46B06, 52A23. DOI: 10.4064/sm210413-16-9 Opublikowany online: 17 December 2021

Streszczenie

Let ${\mit\Theta} ^{(n)}$ be a random vector uniformly distributed on the unit sphere $\mathbb S ^{n-1}$ in $\mathbb R^n$. Consider the projection of the uniform distribution on the cube $[-1,1]^n$ to the line spanned by ${\mit\Theta} ^{(n)}$. The projected distribution is the random probability measure $\mu _{{\mit\Theta} ^{(n)}}$ on $\mathbb R$ given by \[ \mu _{{\mit\Theta} ^{(n)}}(A) := \frac 1 {2^n} \int _{[-1,1]^n} \mathbf {1} \{\langle u, {\mit\Theta} ^{(n)} \rangle \in A\} \,{\rm d} u \] for Borel subets $A$ of $\mathbb {R}$. It is well known that, with probability $1$, the sequence of random probability measures $\mu _{{\mit\Theta} ^{(n)}}$ converges weakly to the centered Gaussian distribution with variance $1/3$. We prove a large deviation principle for the sequence $\mu _{{\mit\Theta} ^{(n)}}$ on the space of probability measures on $\mathbb R$ with speed $n$. The (good) rate function is explicitly given by $I(\nu (\alpha )) := - \frac {1}{2} \log ( 1 - \|\alpha \|_2^2)$ whenever $\nu (\alpha )$ is the law of a random variable of the form $$ \sqrt {1 - \|\alpha \|_2^2 } \frac {Z}{\sqrt 3} + \sum _{ k = 1}^\infty \alpha _k U_k, $$ where $Z$ is standard Gaussian independent of $U_1,U_2,\ldots $ which are i.i.d. ${\rm Unif} [-1,1]$, and $\alpha _1 \geq \alpha _2 \geq \cdots $ is a non-increasing sequence of non-negative reals with $\|\alpha \|_2 \lt 1$. We obtain a similar result for random projections of the uniform distribution on the discrete cube $\{-1,+1\}^n$.

Autorzy

  • Samuel G. G. JohnstonDepartment of Mathematical Sciences
    University of Bath
    Claverton Down
    Bath BA2 7AY, United Kingdom
    e-mail
  • Zakhar KabluchkoFaculty of Mathematics
    University of Münster
    Orléans-Ring 10
    48149 Münster, Germany
    e-mail
  • Joscha ProchnoFaculty of Computer Science and Mathematics
    University of Passau
    Innstrasse 33
    94032 Passau, Germany
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek