JEDNOSTKA NAUKOWA KATEGORII A+

Generic nonexpansive Hilbert space mappings

Davide Ravasini, Daylen K. Thimm Studia Mathematica MSC: Primary 46C05; Secondary 54E52 DOI: 10.4064/sm240722-12-3 Opublikowany online: 21 July 2025

Streszczenie

We consider a closed convex set $C$ in a separable, infinite-dimensional Hilbert space and endow the set $\mathcal N(C)$ of nonexpansive self-mappings on $C$ with the topology of pointwise convergence. We introduce the notion of a somewhat bounded set and establish a strong connection between this property and the existence of fixed points for the generic $f\in \mathcal N(C)$, in the sense of Baire category. Namely, if $C$ is somewhat bounded, the generic nonexpansive mapping on $C$ admits a fixed point, whereas if $C$ is not somewhat bounded, the generic nonexpansive mapping on $C$ does not have any fixed points. This results in a topological 0-1 law: the set of all $f\in \mathcal N(C)$ with a fixed point is either meager or residual. We further prove that, generically, there are no fixed points in the interior of $C$ and, under additional geometric assumptions, we show the uniqueness of such fixed points for the generic $f\in \mathcal N(C)$ and the convergence of the iterates of $f$ to its fixed point.

Autorzy

  • Davide RavasiniMathematisches Institut
    Universität Leipzig
    04109 Leipzig, Germany
    and
    Mathematical Institute
    Charles University
    186 75 Praha, Czech Republic
    e-mail
  • Daylen K. ThimmDepartment of Mathematics
    Universität Innsbruck
    6020 Innsbruck, Austria
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek