JEDNOSTKA NAUKOWA KATEGORII A+

Approximations of Lipschitz maps with maximal derivatives on Banach spaces

Geunsu Choi Studia Mathematica MSC: Primary 46B04; Secondary 26A16, 46B20 DOI: 10.4064/sm250108-15-7 Opublikowany online: 13 February 2026

Streszczenie

We study two types of approximations of Lipschitz maps with derivatives of maximal slopes on Banach spaces. First, we characterize the Radon–Nikodým property in terms of strongly norm attaining Lipschitz maps and maximal derivative attaining Lipschitz maps, which complements the characterization presented by Choi et al. (2020). It is shown in particular that if every Lipschitz map can be approximated by those that either strongly attain their norm or attain their maximal derivative for every renorming of the range space, then the range space must have the Radon–Nikodým property. Next, we prove that every Lipschitz functional defined on the real line can be locally approximated by maximal affine functions, while uniform approximation cannot be guaranteed. This extends the previous work of Bates et al. (1999) from the perspective of maximal affine functions.

Autorzy

  • Geunsu ChoiDepartment of Mathematics Education
    Sunchon National University
    57922 Jeollanam-do, South Korea
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek