JEDNOSTKA NAUKOWA KATEGORII A+

On cleanness of $AW^*$-algebras

Lu Cui, Minghui Ma Studia Mathematica MSC: Primary 47A65; Secondary 46L99 DOI: 10.4064/sm250417-23-9 Opublikowany online: 10 February 2026

Streszczenie

A ring is called clean if every element is the sum of an invertible element and an idempotent. This paper investigates the cleanness of $AW^*$-algebras. We prove that all finite $AW^*$-algebras are clean, affirmatively solving a question posed by Vaš. We also prove that all countably decomposable infinite $AW^*$-factors are clean. A $*$-ring is called almost $*$-clean if every element can be expressed as the sum of a non-zero-divisor and a projection. We show that an $AW^*$-algebra is almost $*$-clean if and only if it is finite.

Autorzy

  • Lu CuiCollege of Science
    China University of Petroleum (East China)
    266580 Qingdao, China
    e-mail
  • Minghui MaSchool of Mathematical Sciences
    Dalian University of Technology
    116024 Dalian, China
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek