JEDNOSTKA NAUKOWA KATEGORII A+

Lower-order refinements of greedy approximation

Kevin Beanland, Hùng Việt Chu, Thomas Schlumprecht, András Zsák Studia Mathematica MSC: Primary 41A65; Secondary 46B15 DOI: 10.4064/sm250412-2-10 Opublikowany online: 16 February 2026

Streszczenie

For two countable ordinals $\alpha $ and $\beta $, a basis of a Banach space $X$ is said to be $(\alpha , \beta )$-quasi-greedy if it is

$\bullet$ quasi-greedy,

$\bullet$ $\mathcal {S}_\alpha $-unconditional but not $\mathcal {S}_{\alpha +1}$-unconditional, and

$\bullet$ $\mathcal {S}_\beta $-democratic but not $\mathcal {S}_{\beta +1}$-democratic.

If $\alpha $ or $\beta $ is replaced with $\infty $, then the basis is required to be unconditonal or democratic, respectively. Previous work constructed a $(0,0)$-quasi-greedy basis, an $(\alpha , \infty )$-quasi-greedy basis, and an $(\infty , \alpha )$-quasi-greedy basis. In this paper, we construct $(\alpha , \beta )$-quasi-greedy bases for $\beta \le \alpha +1$ (except the already solved case $\alpha = \beta = 0$).

Autorzy

  • Kevin BeanlandDepartment of Mathematics
    Washington and Lee University
    Lexington, VA 24450, USA
    e-mail
  • Hùng Việt ChuDepartment of Mathematics
    Washington and Lee University
    Lexington, VA 24450, USA
    e-mail
  • Thomas SchlumprechtDepartment of Mathematics
    Texas A&M University
    College Station, TX 77843, USA
    and
    Faculty of Electrical Engineering
    Czech Technical University in Prague
    166 27 Praha 6, Czech Republic
    e-mail
  • András ZsákPeterhouse
    University of Cambridge
    Cambridge CB2 1RD, UK
    and
    Department of Pure Mathematics and Mathematical Statistics
    Centre for Mathematical Sciences
    University of Cambridge
    Cambridge CB3 0WB, UK
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek