JEDNOSTKA NAUKOWA KATEGORII A+

Besicovitch-weighted ergodic theorems with continuous time

Semyon Litvinov Studia Mathematica MSC: Primary 47A35; Secondary 46L52 DOI: 10.4064/sm250112-29-10 Opublikowany online: 18 December 2025

Streszczenie

Given $1\leq p \lt \infty $, we show that ergodic flows in the $\mathcal L^p$-space over a $\sigma $-finite measure space generated by strongly continuous semigroups of Dunford–Schwartz operators and modulated by bounded Besicovitch almost periodic functions converge almost uniformly (in Egorov’s sense). The corresponding local ergodic theorem is proved with identification of the limit. Then we extend these results to arbitrary fully symmetric spaces, including Orlicz, Lorentz, and Marcinkiewicz spaces.

Autorzy

  • Semyon LitvinovPennsylvania State University
    Hazleton, PA 18202, USA
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek