JEDNOSTKA NAUKOWA KATEGORII A+

Precompactness notions in Kaplansky–Hilbert modules and extensions with discrete spectrum

Markus Haase, Henrik Kreidler Studia Mathematica MSC: Primary 37A15; Secondary 46H25, 06E15 DOI: 10.4064/sm250612-2-10 Opublikowany online: 10 February 2026

Streszczenie

This paper is a continuation of our work on the functional-analytic core of the classical Furstenberg–Zimmer theory. We introduce and study (in the framework of lattice-ordered spaces) the notions of total order-boundedness and uniform total order-boundedness. Either one generalizes the concept of ordinary precompactness known from metric space theory. These new notions are then used to define and characterize “compact extensions” of general measure-preserving systems (with no restrictions on the underlying probability spaces or on the acting groups). In particular, it is (re)proved that compact extensions and extensions with discrete spectrum are one and the same thing. Finally, we show that under natural hypotheses a subset of a Kaplansky–Banach module is totally order-bounded if and only if it is cyclically compact (in the sense of Kusraev).

Published in Open Access (under CC-BY license).

Autorzy

  • Markus HaaseMathematisches Seminar
    Christian-Albrechts-Universität zu Kiel
    24118 Kiel, Germany
    e-mail
  • Henrik KreidlerFachgruppe Mathematik und Informatik
    Bergische Universität Wuppertal
    42119 Wuppertal, Germany
    and
    Mathematisches Institut
    Universität Leipzig
    04109 Leipzig, Germany
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek