Decomposability of extremal positive unital maps on $M_2(\mathbb C)$

Tom 73 / 2006

W/ladys/law A. Majewski, Marcin Marciniak Banach Center Publications 73 (2006), 347-356 MSC: 47B65, 47L07. DOI: 10.4064/bc73-0-27

Streszczenie

A map $\varphi:M_m(\mathbb C)\to M_n(\mathbb C)$ is decomposable if it is of the form $\varphi=\varphi_1+\varphi_2$ where $\varphi_1$ is a CP map while $\varphi_2$ is a co-CP map. It is known that if $m=n=2$ then every positive map is decomposable. Given an extremal unital positive map $\varphi:M_2(\mathbb C)\to M_2(\mathbb C)$ we construct concrete maps (not necessarily unital) $\varphi_1$ and $\varphi_2$ which give a decomposition of $\varphi$. We also show that in most cases this decomposition is unique.

Autorzy

  • W/ladys/law A. MajewskiInstitute of Theoretical Physics and Astrophysics
    Gda/nsk University
    Wita Stwosza 57
    80-952 Gda/nsk, Poland
    e-mail
  • Marcin MarciniakInstitute of Theoretical Physics and Astrophysics
    Gda/nsk University
    Wita Stwosza 57
    80-952 Gda/nsk, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek