Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

The binary Goldbach conjecture with primes in arithmetic progressions with large modulus

Tom 159 / 2013

Claus Bauer, Yonghui Wang Acta Arithmetica 159 (2013), 227-243 MSC: 11F32, 11F25. DOI: 10.4064/aa159-3-2

Streszczenie

It is proved that for almost all prime numbers $k\leq N^{1/4-\epsilon},$ any fixed integer $b_{2}$, $(b_{2},k)=1,$ and almost all integers $b_{1}$, $1\leq b_{1}\leq k$, $(b_{1},k)=1, $ almost all integers $n$ satisfying $n\equiv b_{1}+b_{2}\,\, ({\rm mod}\,\, k)$ can be written as the sum of two primes $p_{1}$ and $p_{2}$ satisfying $p_{i}\equiv b_{i}\,\,({\rm mod}\,\, k)$, $i=1,2.$ For the proof of this result, new estimates for exponential sums over primes in arithmetic progressions are derived.

Autorzy

  • Claus BauerDolby Laboratories
    Beijing 100020, P.R. China
    e-mail
  • Yonghui WangDepartment of Mathematics
    Capital Normal University
    Xi San Huan Beilu 105
    Beijing 100048, P.R. China
    e-mail
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek