Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

On ranks of Jacobian varieties in prime degree extensions

Tom 161 / 2013

Dave Mendes da Costa Acta Arithmetica 161 (2013), 241-248 MSC: Primary 11G05. DOI: 10.4064/aa161-3-3

Streszczenie

T. Dokchitser [Acta Arith. 126 (2007)] showed that given an elliptic curve $E$ defined over a number field $K$ then there are infinitely many degree 3 extensions $L/K$ for which the rank of $E(L)$ is larger than $E(K)$. In the present paper we show that the same is true if we replace 3 by any prime number. This result follows from a more general result establishing a similar property for the Jacobian varieties associated with curves defined by an equation of the shape $f(y) = g(x)$ where $f$ and $g$ are polynomials of coprime degree.

Autorzy

  • Dave Mendes da CostaSchool of Mathematics
    University Walk
    Bristol, BS8 1TW, United Kingdom
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek