# Wydawnictwa / Czasopisma IMPAN / Acta Arithmetica / Wszystkie zeszyty

## Acta Arithmetica

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

## Sparsity of the intersection of polynomial images of an interval

### Tom 165 / 2014

Acta Arithmetica 165 (2014), 243-249 MSC: Primary 11P21, 11D79. DOI: 10.4064/aa165-3-3

#### Streszczenie

We show that the intersection of the images of two polynomial maps on a given interval is sparse. More precisely, we prove the following. Let $f(x), g(x)\in \mathbb F_{p}[x]$ be polynomials of degrees $d$ and $e$ with $d\ge e\ge 2$. Suppose $M\in \mathbb Z$ satisfies $$p^{\frac 1E(1+\frac {\kappa }{1-\kappa })}>M>p^{\varepsilon },$$ where $E=e(e+1)/2$ and $\kappa =(\frac 1d-\frac 1{d^2})\frac {E-1}{E}+\varepsilon$. Assume $f(x)-g(y)$ is absolutely irreducible.Then $$|f([0,M])\cap g([0, M])|\lesssim M^{1-\varepsilon }.$$

#### Autorzy

• Mei-Chu ChangDepartment of Mathematics
University of California
Riverside, CA 92521, U.S.A.
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

## Przepisz kod z obrazka Odśwież obrazek