Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Sparsity of the intersection of polynomial images of an interval

Tom 165 / 2014

Mei-Chu Chang Acta Arithmetica 165 (2014), 243-249 MSC: Primary 11P21, 11D79. DOI: 10.4064/aa165-3-3

Streszczenie

We show that the intersection of the images of two polynomial maps on a given interval is sparse. More precisely, we prove the following. Let $f(x), g(x)\in \mathbb F_{p}[x]$ be polynomials of degrees $d$ and $e$ with $d\ge e\ge 2$. Suppose $M\in \mathbb Z$ satisfies $$ p^{\frac 1E(1+\frac {\kappa }{1-\kappa })}>M>p^{\varepsilon }, $$ where $E=e(e+1)/2$ and $\kappa =(\frac 1d-\frac 1{d^2})\frac {E-1}{E}+\varepsilon $. Assume $f(x)-g(y)$ is absolutely irreducible.Then $$|f([0,M])\cap g([0, M])|\lesssim M^{1-\varepsilon }.$$

Autorzy

  • Mei-Chu ChangDepartment of Mathematics
    University of California
    Riverside, CA 92521, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek