Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

On the average value of the canonical height in higher dimensional families of elliptic curves

Tom 166 / 2014

Wei Pin Wong Acta Arithmetica 166 (2014), 101-128 MSC: Primary 11G05; Secondary 11G50, 14G40. DOI: 10.4064/aa166-2-1

Streszczenie

Given an elliptic curve $E$ over a function field $K=\mathbb {Q}(T_1, \ldots , T_n)$, we study the behavior of the canonical height $\hat{h}_{E_\omega }$ of the specialized elliptic curve $E_\omega $ with respect to the height of $\omega \in \mathbb {Q}^n$. We prove that there exists a uniform nonzero lower bound for the average of the quotient ${\hat{h}_{E_\omega }(P_\omega )}/{h(\omega )}$ over all nontorsion $P \in E(K)$.

Autorzy

  • Wei Pin WongMathematics Department
    Box 1917
    Brown University
    Providence, RI 02912, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek