Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Horizontal monotonicity of the modulus of the zeta function, $L$-functions, and related functions

Tom 166 / 2014

Yu. Matiyasevich, F. Saidak, P. Zvengrowski Acta Arithmetica 166 (2014), 189-200 MSC: Primary 11M06; Secondary 11M26. DOI: 10.4064/aa166-2-4

Streszczenie

As usual, let $s = \sigma + it$. For any fixed value of $t$ with $|t| \geq 8$ and for $\sigma < 0$, we show that $|\zeta(s)|$ is strictly decreasing in $\sigma$, with the same result also holding for the related functions $\xi$ of Riemann and $\eta$ of Euler. The following inequality related to the monotonicity of all three functions is proved: $$ \Re\biggl(\frac {\eta'(s)}{\eta(s)} \biggr) < \Re\biggl(\frac {\zeta'(s)}{\zeta(s)}\biggr) < \Re\biggl(\frac {\xi'(s)}{\xi(s)} \biggr). $$ It is also shown that extending the above monotonicity result for $|\zeta(s)|$, $|\xi(s)|,$ or $|\eta(s)| $ from $\sigma < 0$ to $\sigma < 1/2$ is equivalent to the Riemann hypothesis. Similar monotonicity results will be established for all Dirichlet $L$-functions $L(s,\chi)$, where $\chi$ is any primitive Dirichlet character, as well as the corresponding $\xi(s,\chi)$ functions, together with the relation of this to the generalized Riemann hypothesis. Finally, these results will be interpreted in terms of the degree $1$ elements of the Selberg class.

Autorzy

  • Yu. MatiyasevichSteklov Institute of Mathematics
    Russian Academy of Sciences
    St. Petersburg Department
    (POMI RAN)
    27, Fontanka
    St. Petersburg, 191023, Russia
    e-mail
  • F. SaidakDepartment of Mathematics
    University of North Carolina
    Greensboro, NC 27402, U.S.A.
    e-mail
  • P. ZvengrowskiDepartment of Mathematics and Statistics
    University of Calgary
    Calgary, Alberta, Canada T2N 1N4
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek