Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Rational torsion points on Jacobians of modular curves

Tom 172 / 2016

Hwajong Yoo Acta Arithmetica 172 (2016), 299-304 MSC: 11G10, 11G18, 14G05. DOI: 10.4064/aa8140-12-2015 Opublikowany online: 3 December 2015

Streszczenie

Let $p$ be a prime greater than 3. Consider the modular curve $X_0(3p)$ over $\mathbb Q$ and its Jacobian variety $J_0(3p)$ over $\mathbb Q$. Let $\mathcal T(3p)$ and $\mathcal C(3p)$ be the group of rational torsion points on $J_0(3p)$ and the cuspidal group of $J_0(3p)$, respectively. We prove that the $3$-primary subgroups of $\mathcal T(3p)$ and $\mathcal C(3p)$ coincide unless $p\equiv 1 \pmod 9$ and $3^{(p-1)/3} \equiv 1 \pmod {p}$.

Autorzy

  • Hwajong YooCenter for Geometry and Physics
    Institute for Basic Science (IBS)
    Pohang 37673, Republic of Korea
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek