Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

On representing coordinates of points on elliptic curves by quadratic forms

Tom 179 / 2017

Andrew Bremner, Maciej Ulas Acta Arithmetica 179 (2017), 55-78 MSC: 11D25, 11D41, 11E16, 11G05. DOI: 10.4064/aa8597-1-2017 Opublikowany online: 19 May 2017

Streszczenie

Given an elliptic quartic of type $Y^2=f(X)$ representing an elliptic curve of positive rank over $\mathbb Q$, we investigate the question of when the $Y$-coordinate can be represented by a quadratic form of type $ap^2+bq^2$. In particular, we give examples of equations of surfaces of type $c_0+c_1x+c_2x^2+c_3x^3+c_4x^4=(ap^2+bq^2)^2$, $a,b,c \in \mathbb Q$, where we can deduce the existence of infinitely many rational points. We also investigate surfaces of type $Y^2=f(a p^2+b q^2)$ where the polynomial $f$ is of degree $3$.

Autorzy

  • Andrew BremnerSchool of Mathematics and Statistical Sciences
    Arizona State University
    Tempe, AZ 85287-1804, U.S.A.
    e-mail
  • Maciej UlasInstitute of Mathematics
    Jagiellonian University
    Łojasiewicza 6
    30-348 Kraków, Poland
    e-mail
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek