JEDNOSTKA NAUKOWA KATEGORII A+

# Wydawnictwa / Czasopisma IMPAN / Acta Arithmetica / Wszystkie zeszyty

## Acta Arithmetica

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

## On the self-duality of rings of integers in tame and abelian extensions

### Tom 191 / 2019

Acta Arithmetica 191 (2019), 151-171 MSC: Primary 11R33; Secondary 11R65. DOI: 10.4064/aa180628-6-12 Opublikowany online: 4 September 2019

#### Streszczenie

Let $L/K$ be a tame Galois extension of number fields with group $G$. It is well-known that any ambiguous ideal in $L$ is locally free over $\mathcal {O}_KG$ (of rank one), and so it defines a class in the locally free class group of $\mathcal {O}_KG$, where $\mathcal {O}_K$ denotes the ring of integers of $K$. In this paper, we shall study the relationship among the classes arising from the ring of integers $\mathcal {O}_L$ of $L$, the inverse different $\mathfrak {D}_{L/K}^{-1}$ of $L/K$, and the square root of the inverse different $A_{L/K}$ of $L/K$ (if it exists), in the case that $G$ is abelian. They are naturally related because $A_{L/K}^2 = \mathfrak {D}_{L/K}^{-1} = \mathcal {O}_L^*$, and $A_{L/K}$ is special because $A_{L/K} = A_{L/K}^*$, where $*$ denotes the dual with respect to the trace of $L/K$.

#### Autorzy

• Cindy (Sin Yi) TsangSchool of Mathematics (Zhuhai)
Sun Yat-Sen University
Tangjiawan, Zhuhai
Guangdong, 519082, P.R. China
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

## Przepisz kod z obrazka Odśwież obrazek