# Wydawnictwa / Czasopisma IMPAN / Acta Arithmetica / Wszystkie zeszyty

## Acta Arithmetica

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

## Improved lower bound for the number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set

### Tom 192 / 2020

Acta Arithmetica 192 (2020), 189-210 MSC: 11C08, 41A17, 26C10, 30C15. DOI: 10.4064/aa190204-27-5 Opublikowany online: 25 October 2019

#### Streszczenie

Let $n_1 \lt n_2 \lt \cdots \lt n_N$ be nonnegative integers. In a private communication Brian Conrey asked how fast the number of real zeros of the trigonometric polynomials $T_N(\theta ) = \sum _{j=1}^N {\cos (n_j\theta )}$ tends to $\infty$ as a function of $N$. This question in general does not appear to be easy. Let ${\mathcal P}_n(S)$ be the set of all algebraic polynomials of degree at most $n$ with each of their coefficients in $S$. For a finite set $S \subset {\mathbb C}$ let $M = M(S) := \max \{|z|: z \in S\}$. It has been shown recently that if $S \subset {\mathbb R}$ is a finite set and $(P_n)$ is a sequence of self-reciprocal polynomials $P_n \in {\mathcal P}_n(S)$ with $|P_n(1)|$ tending to $\infty$, then the number of zeros of $P_n$ on the unit circle also tends to $\infty$. In this paper we show that if $S \subset {\mathbb Z}$ is a finite set, then every self-reciprocal polynomial $P \in {\mathcal P}_n(S)$ has at least $$c(\log \log \log |P(1)|)^{1-\varepsilon }-1$$ zeros on the unit circle of ${\mathbb C}$ with a constant $c \gt 0$ depending only on $\varepsilon \gt 0$ and $M = M(S)$. Our new result improves the exponent $1/2 - \varepsilon$ in a recent result by Sahasrabudhe to $1 - \varepsilon$. His new idea [Adv. Math. 343 (2019)] is combined with the approach used in our ealier work [Acta Arith. 176 (2016)] offering an essentially simplified way to achieve our improvement. We note that in both Sahasrabudhe’s paper and our paper the assumption that the finite set $S$ contains only integers is deeply exploited.

#### Autorzy

• Tamás ErdélyiDepartment of Mathematics
Texas A&M University
College Station, TX 77843, U.S.A.
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

## Przepisz kod z obrazka Odśwież obrazek